Using Artificial Neural Networks to Predict the Quality and Performance of Oilfield Cements
نویسندگان
چکیده
contamination are major factors contributing to variability in oil-field cement-slurry performance. Of particular concern are problems encountered when a slurry is formulated with one cement sample and used with a batch having different properties. Such variability imposes a heavy burden on performance testing and is often a major factor in operational failure. We describe methods that allow the identification, characterization, and prediction of the variability of oil-field cements. Our approach involves predicting cement compositions, particlesize distributions, and thickening-time curves from the diffuse reflectance infrared Fourier transform spectrum of neat cement powders. Predictions make use of artificial neural networks. Slurry formulation thickening times can be predicted with uncertainties of less than ±10 percent. Composition and particle-size distributions can be predicted with uncertainties a little greater than measurement error, but general trends and differences between cements can be determined reliably. Our research shows that many key cement properties are captured within the Fourier transform infrared spectra of cement powders and can be predicted from these spectra using suitable neural network techniques. Several case studies are given to emphasize the use of these techniques, which provide the basis for a valuable quality control tool now finding commercial use in the oil field.
منابع مشابه
"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River
The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملPredicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملApplication of artificial neural networks for the prediction of carbonate lithofacies, based on well log data, Sarvak Formation, Marun oil field, SW Iran
Lithofacies identification can provide qualitative information about rocks. It can also explain rock textures which are importantcomponents for hydrocarbon reservoir description Sarvak Formation is an important reservoir which is being studied in the Marun oilfield, in the Dezful embayment (Zagros basin). This study establishes quantitative relationships between digital well logs data androutin...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AI Magazine
دوره 17 شماره
صفحات -
تاریخ انتشار 1996